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Abstract:

This study aims to explore the effect of changing the substrate type
on the performance of a microstrip patch antenna, in terms of gain,
directivity, bandwidth, and bandwidth efficiency. Three different
substrates were investigated: Rogers RT5880, FR-4, and Alumina.
Each substrate has distinct physical and electrical properties, which
influence the antenna’s performance and overall dimensions. The
design and simulation were carried out using CST Microwave
Studio, where a simple microstrip patch antenna operating at 2.4
GHz was modelled. The performance for each substrate was
analyzed, and the simulation results were discussed. The results
highlighted clear differences in performance among the three
substrates. Rogers RT5880 demonstrated the best performance in
terms of gain and radiation efficiency, while FR-4 was the most cost-
effective, albeit less efficient. On the other hand, Alumina exhibited
a very compact size due to its high dielectric permittivity, but faced
challenges related to material losses.

Keywords: Microstrip Patch Antenna, Rogers RT5880, FR-4,
Alumina, CST Microwave Studio.
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1.Introduction

Microstrip patch antennas are widely used in wireless
communication applications due to their compact structure and ease
of fabrication [1][2]. However, the performance of these antennas is
significantly influenced by the type of substrate employed, which
plays a critical role in the overall design process [3].

The dielectric permittivity (&;) of the substrate directly affects the
antenna's characteristics; higher permittivity values result in smaller
antenna dimensions, contributing to overall size reduction [4].
Nevertheless, this reduction often comes at the cost of increased
material losses and decreased radiation efficiency [5][6].
Conversely, substrates with lower permittivity enhance efficiency
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and increase bandwidth, though they may require a larger physical
size to maintain the same operating frequency [7][8].

Therefore, substrate selection is not merely a design preference but
a fundamental decision that must be carefully evaluated to achieve
an optimal balance between performance, size, and cost. This
consideration becomes even more crucial in the context of emerging
technologies such as fifth-generation (5G) networks and compact
integrated systems. In recent years, several studies have examined
the impact of substrate on the performance of microstrip patch
antennas [9][10].

The methodology of this study was organized into four consecutive
phases to ensure a systematic investigation of the antenna design.
First, the research problem was defined by focusing on the influence
of substrate dielectric permittivity on the performance of a
microstrip patch antenna operating at 2.4 GHz, with particular
attention to return loss, gain, directivity, bandwidth, bandwidth
efficiency, and the effect on physical size. Following this, three
substrates with distinct dielectric properties—Rogers RT5880, FR-
4, and Alumina—were carefully selected to provide a representative
comparison between high-performance and compact design options.
The next phase involved the design of a rectangular inset-fed
microstrip patch antenna, where the patch width, patch length, and
ground plane dimensions, were determined using well-established
design equations. In this process, the operating frequency was
maintained at 2.4 GHz with a constant substrate thickness of 1.7 mm
to ensure uniformity across all models. Finally, the designed
structures were simulated using CST Microwave Studio, and the
results were analyzed to evaluate and compare the performance of
the antennas on the basis of the selected substrates, thereby
highlighting the practical implications of dielectric permittivity on
antenna behavior.

2. Antennas Design

The design and simulation results for antennas with Rogers
RT5880, FR-4 and Alumina substrates are designed at operation
frequency of 2.4GHz. The designs were implemented using CST
Microwave Studio, maintaining the same geometric structure for
each model while only varying the substrate type. This approach
aimed to analyze the direct impact of the substrate on the overall
performance of the antenna.
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Microstrip patch antennas consisting of three layers of
patch made from copper, Rogers RT5880 substrate which
has permittivity €,= 2.2, or FR-4 substrate which has
permittivity  &,.= 4.3, or Alumina substrate which has
permittivity .= 9.4 and then the ground plane made from

copper. Figure 1 shows the configuration of the designed
microstrip patch antenna.
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Figurel: configuration of microstrip patch
The figure was

""created by the author based on the design process carried out in this
study.”

The microstrip feed line, characterized by a width (W) and a
length (Ls), is employed to excite the patch. The connection between
the patch and the feed line is achieved through an inset cut, defined
by the inset length (), ) and inset width (W, ). The initial design step
involves selecting the operating frequency f, =2.4 GHz, the
substrate relative permittivity, and the substrate thickness
h=1.7 mm. Based on these parameters, the dimensions of the patch
and substrate are determined by applying the standard microstrip
patch antenna design equations [11].

c

Wy = ——F— 1)
p 2f, ’sr;-l

Due to move the electric field lines via the vacuum before
passing throe the substrate. it is necessary to evaluate the effective
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dielectric constant ( &.¢f ), which represents the combined influence
of both the substrate material and the surrounding medium.

e+l | -1 wp. L
Seff: > + > [1+127p]2 (2)

The length of the patch antenna (L,) as given in formula.

The effective length (L.sr) and (AL) can be calculated from
equations.

c
Lers = 5770 @

(eepr +0.3) (SE+0.264)

AL = 0.412h

()

(eerr-0.264) (SE+038)

The width and the length of the substrate can be calculated by using
equations.

Ws =W, + 6 xh (6)
Lg=1L,+ 6% h @)
Table 1: Parameters of antennas
Parameters Definition Value of parameter
of of mm
the the parameter of different substrates
antenna Rogers RT5880 FR-4 Alumina
Ws Substrate width 65 49 38
Ls Substrate length 54 40 31
h Substrate 1.7 1.7 1.7
Thickness
Wp Patch width 60 44 28
Lp Patch length 40.82 29.28 19.8
WF Feed line width 3 3 3
Lf Feed line length 12 10 10
Wg Inset cut width 4 4.5 3.5
Yo Inset cut length 5 10 7
t Patch thickness 0.035 0.035 0.035
& permittivity 2.2 4.3 9.4
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3. Antennas Simulation

After calculating the parameters of Antennas, the design is
simulated by using the microwave simulation software CST. Figure
2 below shows the 3D design structure of microstrip patch antennas
in CST.

=z

J.

b

Figure 2: 3D Structure of microstrip patch in CST

3.1 Antennas with Rogers RT5880

The simulation process demonstrates that return loss was -
27.19 dB at resonant frequency 2.4 GHz. The bandwidth is 55.4
MHz and bandwidth efficiency at -10dB is 2.3%. Figure 3
illustrates return loss of Rogers RT5880.

S-Parameters [Magnitude in dB]
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Figure 3: Return loss of Rogers RT5880

25 1-
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The antenna gain of Rogers RT5880 is 5.87 dBi as illustrated in
figure 4(a) and the antenna directivity of the Rogers RT5880 is 7.19
dBi as shown in figure 4(b).
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Figure 4: (a) Polar plot of antenna gain (b) Polar plot of antenna directivity

3.2 Antennas with FR-4

The simulation process demonstrates that return loss was -
20.321 dB at resonant frequency 2.4 GHz. The bandwidth is 51.5
MHz and bandwidth efficiency at -10 dB is 2.14 Figure 5 illustrates
the return loss of FR-4.
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Figure 5: Return loss of FR-4

The antenna gain of FR-4 is 4.59 dBi as illustrated in figure 6 ()
and the antenna directivity of FR-4 is 5.68 dBi as shown in figure

6(b).
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Figure 6: (a) Polar plot of antenna gain (b) Polar plot of antenna directivity
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3.3 Antennas With Alumina

The simulation process demonstrates that return loss was -
27.78 dB at resonant frequency 2.4 GHz. The bandwidth is 32.7
MHz and bandwidth efficiency at -10 dB is 1.36%. Figure 7
illustrates return loss of Alumina.
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Figure7: Return loss of Alumina

The antenna gain of Aluminais 2.7 dBi as illustrated in figure 8
(@) and the antenna directivity of Alumina is 4.3 dBi as shown in
figure 8(b).
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Figure8: (a) Polar Plot of Antenna Gain (b) Polar Plot of Antenna Directivity

3. Discussion and Comparison of Results

In this section, the simulation results obtained for the three
substrates Rogers RT5880, FR-4, and Alumina will be compared in
terms of gain, directivity, bandwidth, bandwidth efficiency, and
antenna size. Table 2 presents a comparison of the results for the
three substrates.
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Table2: presents a comparison of the simulation results

parameters Alumina FR-4 Rogers
RT5880
gain 2.7 dBi 4.59 dBi 5.87 dBi
directivity 4.3 dBi 5.68 dBi 7.19 dBI
bandwidth 32.7 MHz 51.5 MHz 55.4 MHz
bandwidth % 1.36 % 2.14 % 2.3
efficiency
Antenna's size | 554.4mm? | 1288.32 mm? | 2449.2 mm?

From Table 2, it is observed that the Rogers RT5880 substrate
outperforms the other two in all parameters gain, directivity,
bandwidth, bandwidth efficiency and antenna size. This superior
performance is attributed to its ideal properties, such as low
permittivity and minimal losses, which result in excellent simulation
outcomes, making it the most suitable choice for high-performance
and precision-demanding applications. On the other hand, the FR-4
substrate demonstrated moderate performance, with acceptable gain
and good impedance matching. The Alumina substrate showed the
lowest performance in terms of gain and efficiency, mainly due to
its high dielectric constant, which negatively affects radiation.
However, this substrate achieved the smallest patch size compared
to the other two, making it a viable option for applications where
compact size is prioritized over antenna performance.

5. Conclusion

The primary objective of this study was to investigate the impact
of substrate type on the performance of a microstrip patch antenna,
based on simulations using three different substrates: Rogers
RT5880, FR-4, and Alumina. All antennas were designed to operate
at a frequency of 2.4 GHz. Among the three, the Rogers RT5880
substrate demonstrated superior performance across all key
parameters, including gain, directivity, bandwidth, and radiation
efficiency. The FR-4 substrate delivered moderate and acceptable
performance, making it a suitable option for low-cost applications;
however, it suffered from higher radiation losses compared to
RT5880. On the other hand, the Alumina substrate showed the
lowest performance, mainly due to its high dielectric constant,
which negatively affected the antenna characteristics.
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Overall, the simulations confirmed that the dielectric constant of
the substrate material has a direct influence on antenna efficiency,
particularly in terms of gain, bandwidth, and directivity.
Additionally, the dielectric constant significantly affects the
physical size of the antenna. The antenna designed with Alumina
had the smallest size, owing to the slower propagation of
electromagnetic waves within the high-permittivity material, which
increases electric field density and reduces the required physical
dimensions for achieving similar radiation characteristics.
Therefore, increasing the dielectric constant is a known method for
reducing antenna size.
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